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On the Geometry of Sculptured
Surface Machining

Johannes Wallner and Helmut Pottmann

Abstract. We present geometric aspects of sculptured surface machin-
ing. Several possible configuration manifolds of tool positions relative to a
workpiece are investigated under different aspects: the degree of freedom
of the motion of the tool, the correspondence between the contact point
and the tool position, and the presence or absence of unwanted collisions
between tool and workpiece.

§1. Introduction

In the past decades, strong research efforts have been devoted to developing
the mathematical fundamentals and efficient algorithms for the representation
of free-form surfaces in CAD/CAM systems. However, just a few contributions
address manufacturing of sculptured surfaces, although there are appealing
and practically important open problems in this area.

Geometrical problems in this area include the following: If two surfaces
touch each other at a point, such as a milling-tool and a free-form surface
which is to be manufactured, does the curvature of the surfaces force them
to intersect arbitrarily near the contact point (= the local collision problem)?
Given a free-form surface and a milling tool, is the tool able to move such
that its envelope during the motion is the free-form surface? Is the tool able
to do this while moving only by translations (3-axis milling), or do we need
more flexibility (5-axis milling)? Which relative tool position achieves best
surface quality (=tool positioning)? How can we decompose the theoretically
two-parameter motion of the milling tool by a series of one-parameter motions
such that e.g. manufacturing time is minimal (=motion planning)?

A survey of mathematical fundamentals on NC machining of sculptured
surfaces is given in [1,14,19]. Tool selection, motion planning and local inter-
ference checking for 3-axis and 5-axis machining has been studied in [2,9,10,11,
12,13,25]. Three-axis machining (general offsets and Minkowski addition) are
considered by [15,21,23]. A configuration space has been defined in [3,24].
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There is a variety of contributions using Computer Graphics techniques
such as visibility algorithms [5,7,22]. There the cutter shaft is shrunk to its
axis, and simultaneously the design surface is replaced by an appropriate
offset surface. Collision checking is thus transformed to a visibility test (5-
axis machining requires a modification of the method).

This paper is organized as follows: In Section 2 we briefly show some
concepts of elementary differential geometry. Section 3 sums up some results
concerning the local contact situation. Section 4 investigates configuration
manifolds of motions constrained in several ways and describes the possible
infinitesimal motions of a milling-tool in a contact position. In Section 5 we
study the dependency of the contact point of the contact position. Finally
Section 6 features global statements about the absence of unwanted collisions
under certain circumstances.

§2. Differential Geometry

We first give a short description of some aspects of curvature theory of 2-
surfaces in Euclidean three-space (cf. [4,17,20]).

2.1. Oriented surfaces and their first and second fundamental forms

Consider a regular smooth surface given by the parametrization f = f(u),
where z = (z1,22,23) is a point in Euclidean R3 and v = (u1,u2) ranges
in some open planar domain D. We assume that f is twice continuously
differentiable in order to be able to define curvatures.

The differential df of f maps a tangent vector v = (v1,v2) attached to the
point u, to the vector dy f(v) = &|=o f(u+tv), which is computed by d,, f(v) =
z,1(u)v1 + 2,2(u)ve, where the symbols z; and z 5 mean differentiation with
respect to the first and second variable.

The function n = (z,1 X z,2)/|lz,1 X ,2|| is the surface unit normal vector.
The symmetric bilinear forms g,(v,w) = dyf(v) - duf(w) and h,(v,w) =
—dn(v) - w are called the first and second fundamental forms of f. With g;; =
z;-zjand h;; = —n;-z j = n-z;; we have g(v,w) = Y gi;viw; and h(v,w) =
E h,’j Viwy.

2.2. The Dupin indicatrix and Meusnier’s theorem

If f is the parametrization of a surface, and u = u(t) is a curve in its parameter
domain D, then ¢(t) = f(u(t)) is a curve contained in the surface f(D). The
curve’s tangent é(t) = df (u(t)) is contained in the surface’s tangent plane. Its
second derivative vector is split into three components:

¢ = ||¢|| (knn + at + Kgb),

where n is the normal vector evaluated at u(t) and b is the curve’s normal in
the tangent plane. The coefficients k4 and &, are the geodesic curvature and
normal curvature of the curve, respectively. The following theorem states the
perhaps unexpected fact that the normal curvature is dependent only on the
direction ¢, and we can therefore speak of the normal curvature of a surface
tangent.
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Theorem 1. (Meusnier) The normal curvature of the curve ¢ is computed
by kn = kp(@) = h(,4)/g(w,w).

Evaluate the matrix product (g;;)~'h;; at (u,uz), and compute its two lin-
early independent eigenvectors v',v"” which correspond to eigenvalues k1, K.
Then df (v'), df (v") are orthogonal and define the two principal surface tangents
at u.

Theorem 2. (Euler) Assume that w',w" are unit vectors parallel to the
principal surface tangents at . If df (v) = cos¢w’ + sindw”, then kn(v) =
cos? ¢ - ky + sin® ¢ - ky. The polar diagrams of 1/\/k, and 1/\/—k, in the
tangent plane (the oriented Dupin indicatrices iy, i_) are possibly void or
singular conic sections centered in the origin.

Surface points are called elliptic, if kK362 > 0, hyperbolic if K1k < 0, flat if
K1 = k2 = 0, and parabolic in the remaining cases.

2.3. Euclidean displacements and infinitesimal motions

A Euclidean displacement g : z € R?® — g(z) € R? may be written in the
form  — M - z + v, where M is an orthogonal matrix of determinant 1. A
one-parameter family g(t) = (v(t), M(¢)) of Euclidean displacements, (= a
path of Euclidean motions, or a smooth Euclidean motion) has in all of its
instants an infinitesimal motion, which is determined by the velocity vectors
d(g(t))(z)/dt = 9(t)+ M(t)-z of all points. If an infinitesimal motion coincides
with the velocity field of a smooth rotation about an axis, it is called an
infinitesimal rotation. The definition of infinitesimal translation and infinitesimal
helical motion is analogous.

There is a linear space of infinitesimal motions. It is further well known
that all infinitesimal motions (i.e, all velocity fields of smooth motions) can
be written in the form

T=C¢+cXxuz.

The condition c-¢ = 0 characterizes infinitesimal rotations, ¢ = 0 characterizes
infinitesimal translations, and ¢ # 0, ¢-€ # 0 characterizes infinitesimal helical
motions. We briefly write (c,¢) € IR® to denote an infinitesimal motion. An
infinitesimal rotation whose axis is ¢ + [b] then has the form A(b,a x b) (the
symbol [b] denotes all multiples of the vector b). The translation £ = ¢ has the
form (0, ¢). If we have to consider the coordinates of ¢, in some coordinate
system, we always write ¢ = (co1, €02, cos) and € = (ce3, ¢31, C12)-

2.4. Ruled surfaces

If p(t), v(t) are two curves with v # 0, then f(ui,u2) = p(u1) + ugv(u1) is
a surface whose parameter lines u; = const are straight lines, which will be
denoted by I(u1). Such a surface is called a ruled surface.

‘We need the following well known results concerning the first order differ-
ential properties of ruled surfaces in Euclidean space: there is an orthonormal
frame (g; e1, €2, e3), dependent on a parameter ¢, and a smooth function u; (t)
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such that g(t) is on the ruling I(ui(t)), ei(t) is parallel to it, and eq(t) is
tangent to the surface at ¢(¢), and which can be chosen such that its infinites-
imal motion at ¢ = 0 is a helical motion (c, ) which can be computed by the
following formulae:

Pi=pXv §:= o X PP (det(p, p, p)p + det(p, 5,p)p + (5 B)(p X B))
» [ 2
bz._g?._xm , b= (PP)I.J2 , ¢=68b, t=b-cxs(0).
(B x v) x v|l|;—o (px9)?|—o

The first order differential invariant § is called the distribution parameter of
the ruled surface, and the point s(t) is called its striction point.

2.5. Line congruences

A smooth line congruence X is a smooth two-parameter family of straight
lines I(u;,u2) in Euclidean three-space. It may be parametrized by two ‘sur-
faces’ p(u1,uz) and v(ug,us), where v(uy,u2) # 0. The line I(u1,u2) then is
p(u1,uz) + [v(u1, ug)]. The choice of a curve (u1(t),u2(t)) in the parameter
domain gives a ruled surface I(u1(t), ua(t)).

Definition. A line congruence K is regular at a line l if the six-tuples (p, pxv),
(p1,pXv1+p1 %), (p2,pXvg2+p2 Xv) are linearly independent.

The meaning of this definition is that the lines of the congruence actually
change infinitesimally if we move infinitesimally in the parameter domain.
We will always assume that K is regular.

It is well known that the infinitesimal properties of first order of a line
! within K are like those of a linear line congruence K’, which is called the
tangent to K. There are the following possibilities for K':

o K’ is the set of lines which intersect two lines k', k” (= a hyperbolic linear
congruence with axes k', k").

e K' is the set of lines whose complex extensions intersect two conjugate
complex lines k', k" (= an elliptic linear congruence). This set of lines
is the affine image of the set of lines which join the points (z,y,0) and
(zcosp —ysing,zsing + ycosp, 1), 0 < ¢ < 2.

e K’ is the set of lines tangent to a ruled quadric in the points of one of its
rulings k. (= a parabolic linear congruence). The line k is also called the
axis of K'.

e K’ is a bundle of lines.

In all cases, lines at infinity are allowed (but in the elliptic case they do not
occur). These four types of lines I in a congruence are accordingly called
hyperbolic, elliptic, parabolic, and degenerate.

In the hyperbolic and parabolic case, the points of [ contained in an axis
are called focal points, in the degerenate case the bundle vertex is also called
a focal point.
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There is also a connection between infinitesimal motions and linear line
congruences: a four-dimensional subspace of the space of infinitesimal mo-
tions always contains infinitesimal rotations or translations, whose axes form
a linear line congruence (here we assign to the infinitesimal translation ¢ = ¢
the axis at infinity which is orthogonal to &).

2.5 Submanifolds

As the concepts listed here are essential only for the proofs of our results,
we give only a brief summary: We assume that the reader is familiar with
the concept of a smooth n-dimensional manifold N (an n-manifold). An em-
bedded smooth m-submanifold M of N is characterized by the existence, for
p € M, of a local diffeomorphism which transforms an N-neighbourhood U of
ptoR™ and UNM to R™ C R™. An immersion is a smooth mapping whose
differential is one-to-one (but not necessarily onto). Then locally the immer-
sion is also one-to-one. An immersed k-submanifold is the image of a smooth
k-manifold under an immersion. The difference between embedded and im-
mersed submanifolds is therefore that the latter may have ‘self-intersections’,
but neither are allowed to have ‘singularities’.

An embedded submanifold M; and an immersed submanifold My of N
are transverse (we write M; M My), if for all points p € M; N M, the tangent
spaces Tp,M1, Tp,M span T,N. Then M; N M; is an immersed (dim M; +
dim M; — dim N)-dimensional submanifold of N, whose tangent space equals
TpM 1N TpMz.

If a smooth mapping ¢ of a smooth m-manifold M into a smooth n-
manifold N has constant rank r (i.e., at all points its differential’s rank as of
a linear mapping equals r), then ¢(M) is a smooth immersed r-dimensional
submanifold of N.

§3. Local Contact Situation

If a body is bounded by a smooth surface f, this surface has an inside and
an outside. The unit surface normals can point to either side, depending on
the parametrization. If two bodies, which are bounded by smooth surfaces f/,
f", touch each other, the curvatures of f’, f" give information whether they
intersect locally or not.

It should be remarked that some methods proposed in the literature (cf.
{10,12]) for avoiding local intersections are only approximations, and one can
find surfaces where they won’t work. Also it is important to note that the
presence or absence of local intersections is completely independent of the
actual motion of the two bodies.

Definition. The interior int(:) of a conic i centered in the origin is void if i
is void, and otherwise is the connected component of R? \ ¢ which contains 0
and whose boundary is i. Its exterior ext(i) is the complement of int(?) U .

We assume that f’/, f” are parametrized such that their unit normal vectors
in the common point coincide, and that this common normal vector points to
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the inside for f’ and to the outside for f”. We further assume that not all
four principal curvatures are zero. We consider the Dupin indicatrices i/, , i’_,
iy, and i” for f’ and f", respectively.

Theorem 3. Under these assumptions, the two bodies in question intersect
locally, if one of the intersections iy Nint(s, ), i/ Next(i’) is not void. They
do not intersect, if i, N\, #{ Nint(é,), i Ni’, i Next(i) are void.

Proof: (Sketch) The theorem follows from the fact that a twice continuously
differentiable surface may be approximated of second order by the graph of
a quadratic function, whose contour lines are scaled versions of the Dupin
indicatrices. O

Note that the theorem says nothing about the cases that all principal
curvatures are zero, the indicatrices touch each other in two opposite points,
or even coincide (cf. Fig.1, right). In that case, second derivatives are not
sufficient to decide if there are local intersections. In practice, this does not
matter very much because the only case that is likely to occur with nonzero
probability is that of a flat end mill shaping a planar surface, which does not
have self-intersections.

In [8,16,23] it is shown how to define indicatrices in the case of piecewise
curvature-continuous surfaces. The theorem is valid also in this more general
case.

§4. Configuration Manifolds and their Tangent Spaces

For many problems concerning the milling of free-form surfaces, it is important
to know the degree of freedom of a motion constrained in various ways. Typical
constraints are: Motion by translations such that a surface remains in contact
with another surface (3-axis milling), motion such that a surface remains in
contact with another surface (possible set of tool positions in 5-axis milling),
motion such that a milling tool remains in contact with a surface and its axis
is contained in some previously prescribed line congruence (a possible way to
do 5-axis milling). These topics will be discussed in Subsections 4.1-4.3.

4.1 Translational motions constrained by surface-surface contact

Consider two surfaces f’, f which have a common point p = f'(u") = f"(u")
and share a common unit surface normal n’ = n” there. Imagine the first
surface moving by translations such that it always touches the second surface
(i.e., at every instant ¢ there are a translation vector a(¢) and parameter values
u'(t) and w”(t) such that f'(u'(t))+a(t) = f’(u”(t))). One would expect that
this motion has two degrees of freedom, if we do not count intersections of the
surfaces.

If g(z1, 22) = ) aijmix; is a bivariate homogeneous quadratic polynomial
in the variables z;, 22, we call the rank of the (2 x 2)-matrix a;; the rank of g.
The zero set of g consists of the entire plane in the case of zero rank, of one
line if the rank is one, and of two real or two conjugate complex lines if the
rank is two.
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q;_qn=0

Fig. 1. Indicatrices ¢’ = 1, ¢ = 1 and zero set of ¢’ — ¢". Left: rk(¢’ — ¢") = 2,
Right: rk(¢' — ¢') = 1. .

We have the following theorem (cf. [8,16,23]), which is valid for all contact
situations where at least one surface has no parabolic or flat point, or both
have parabolic points but the principal tangents do not coincide.

Theorem 4. Write the equation of the oriented Dupin indicatrices of f', f"
at the contact point in the form ¢'(zy,z2) = 1 and ¢"'(x1,22) = 1, where z1,z2
are Cartesian coordinates in the tangent plane, and ¢, ¢ are bivariate homo-
geneous quadratic polynomials in xy,z2. If the condition stated immediately
before this theorem is satisfied, then the rank of ¢’ — q'" gives the infinitesimal
degree of freedom of translational motions constrained by the contact of f',
f" (see Fig.1).

Proposition. If, under the assumptions of Th. 4, the infinitesimal degree of
freedom is two, then so is the local degree of freedom.

4.2 Motions constrained by surface-surface contact

Definition. The set of proper Euclidean motions which transforms a surface
f' such that it touches a surface f" is called the configuration space C =
C(f', f") of surface-surface contact.

Clearly, a position g € C is not determined by the contact points alone,
because we still may rotate f’ about the contact normal. But if we prescribe
a unit tangent vector (p';w’) of f' and (p';w”) of f” (which means p’ =
f(ul,up) and w' = df'(v') with ||w’|| = 1, and the same for (p”,w")), then
there is a unique Euclidean motion g € C which maps not only the point p'
onto p”, but also the tangent vector w' onto w”. If we rotate both w', w"
about an angle ¢, this leads to the same g € C, so C' is a smooth image of the
factor manifold C of such equivalence classes of unit tangent vectors, which is
five-dimensional.

This shows that we may expect five degrees of freedom, if f' moves under
the constraint that it touches f" in some point. The following theorem is
given in [18,24]:
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Theorem 5. In the notation of Th. 4, the motion of a surface under the
single constraint that it touches a second one, has five degrees of freedom if
q’ — ¢" has rank two. If that is the case for all possible contact points, then
the configuration space is an immersed five-dimensional submanifold of the
motion group.

Note that the theorem is valid without the additional assumption made in
Th. 4 in case some principal curvatures are zero. It is easy to describe the
tangent space T,C' of the configuration manifold at a contact position g €
C C G (to be precise, the tangent space of the immersion described at the
beginning of Sect. 4.2). The proof of the following proposition can be found
in [18].

Proposition. The linear space T,C of infinitesimal motions which belong to
paths in C is five-dimensional, and the axes of its infinitesimal rotations are
the lines which intersect the contact normal.

In a Cartesian coordinate system whose origin is the contact point and whose
z3-axis is the contact normal, T4C has the equation cg3 = 0.

4.3. Motions constrained by congruences

Here we consider the motion of a rigid body ¥ such that a line a of ¥ is
contained in a congruence K. This subset of the group G of proper Eu-
clidean motions will be denoted by K. We assume that X is parametrized by
Hug,u2) = pluy,uz) + [v(ug, uz)].

If g € K, then it is obvious that both 70 g and pog arein K, if 7 is a
translation parallel to g(a) and p is a rotation with axis g(a).

Lemma. Assume that K is a smooth line congruence which is regular at g(a).
Then K is a four-dimensional smooth submanifold of G in a neighbourhood
of g.

Proof: (Sketch) Let g € K be a position of ¥ such that g(a) € K. We
compute K'’s tangent space TgK of infinitesimal motions at g: Consider a
curve (ui(t),u2(t)) in K’s parameter domain such that I(t) = I(u1(t), u2(t))
is a ruled surface within X with /(0) = g(a). The helical motion described
in Sect. 2.4 is tangent to K. If we choose two such curves with linearly
independent tangent vectors, this gives two linearly independent infinitesimal
motions of T, K, if K is regular at g(a) (the proof of this is left as an exercise
to the reader).

Obviously all infinitesimal translations parallel to g(a) are in T, KX, and
so are the infinitesimal rotations with axis g(a). If g(a) is the line p+ [v], then
the former is described by the six-tuple (0,v) and the latter by (v, p X v). Now
T, K is the linear span of these four infinitesimal motions. O

In case that g(a) is a hyperbolic line of X, there is a simple geometric
characterization of the infinitesimal rotations of T K:
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Fig. 2. Axes of infinitesimal rotations in K.

Proposition. IfX' is a hyperbolic linear congruence tangent to K at the line
9(a) and has axes k', k", then the axes of infinitesimal rotations in Ty K form
a hyperbolic linear congruence L, whose axes b, b" are incident with g(a)Nk",
g(a) N k', respecively, are orthogonal to g(a), and are such that k',V',g(a) as
well as k",b", g(a) are coplanar (see Fig.2).

Proof: It is easy to see that the lines o', a”, incident with k' N g(a), k" N
g(a) and orthogonal to k', k", respectively, are axes of infinitesimal rotations
contained in T, K. The axis of the infinitesimal translations along g(a) (which
is the line at infinity orthogonal to g(a)), g(e) itself, and o', a” intersect both
b, b’. We already know that the set of axes is a linear congruence; because
of these four intersections the lines b’, b are necessarily the axes of £. O

The following is used later:

Proposition. A point of g(a) which contains two different axes of infinitesi-
mal rotations of Ty K must be a focal point of g(a).

Proof: At least one of the two axes is not g(a) itself, and the rotation about
this axis transforms g(a) into a line which intersects g(a). Looking at the list
of linear tangent congruences in Sect. 2.4 shows that this is only possible in a
focal point. O

4.4. Multiple constraints

Assume that a rigid body X, bounded by a smooth surface f’, moves such
that f’ remains in contact with a surface f”, and that in addition a line a of
¥ is contained in a smooth line congruence K.

With C being the configuration space of surface-surface contact (see
Sect. 4.2) and K as in Sect. 4.3 the set of possible positions g of ¥ is given
by the intersection C N K. The following theorem shows under what circum-
stances CNK is actually a smooth three-dimensional submanifold of positions,
as is to be expected when comparing dimensions:

Theorem 6. If T K is not contained in T,C, then C N K is a three-dimensi-
onal immersed submanifold in a neighbourhood of g. This is always the case
if g(a) is not parallel to the contact tangent plane.

Proof: We have to show that C th K. Because dim T,C = 5, this is always
the case if TgK is not contained in T,C. If the contact tangent plane is not
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parallel to [, then any small translation parallel to [ leaves C' and therefore in
this case C M K, and dim(C N K) =dimC + dimK —dimG =3. O

If ¥ has rotational symmetry, and the line g(a) which is forced to belong to
K is its axis, then we can say more about the set CN K of admissible positions.
Clearly, any rotation about the axis does not change ¥, so ¢ € C' N K implies
that po g € C N K whenever p is such a rotation.

We choose a reference point p on the axis, and look at the three-parameter
family of its positions, which is actually only a two-parameter family:

Proposition. IfY has rotational symmetry, a reference point p in ¥’s axis a
traces out a regular two-surface while undergoing all transformations of CNK,
provided that p is never a focal point of g(a). This path surface is transverse
to l if | is not parallel to the contact tangent plane.

Proof: We consider the mapping ¢ : g — g(p) of CN K to R3. All infinitesi-
mal rotations about g(a) assign zero velocity to p, which implies that the rank
of ¢ is not greater than two. If p has zero velocity also for other infinitesimal
motions of T,(C N K), these must be infinitesimal rotations, and we can use
the proposition at the end of Sect. 4.3 to conclude that the rank of ¢ is indeed
two, and its image a smooth 2-surface. If [ and the contact tangent plane are
not parallel, then no infinitesimal translation parallel to ! is in CN K, and the
path surface cannot be parallel to l. O

§5. Movement of the Contact Point

It is important to study the dependency of the contact point on the contact
positions. This will be done for two different types of constraints.

5.1. Motions constrained by surface contact

In Sect. 4.2 we stated that the configuration space C(f’, f") of surface-surface
contact is an immersed image of C as described in Sect. 4.2, if the Dupin
indicatrices of f’, f fulfill a certain condition (Th. 5).

If this is the case, then there is a local inverse C — M, and so the contact
point depends on the positions g € C in a smooth way locally. This (local)
mapping will be denoted by .

As dimC = 5 and the contact point varies in a 2-surface, there is a 3-
dimensional kernel subspace kerdgtyp C T,C of infinitesimal motions which
do not (infinitesimally) change the contact point. The following is an easy
exercise in differential geometry:

Lemma. If f', f" are two surfaces having contact at a point p, n is the unit
normal vector of f', and w,, wy are principal tangent vectors, corresponding
to curvatures K1, kg, then all infinitesimal rotations about the axes p + [n],
p+n/k1+ [we], p+n/ka+ [w1] are contained in the tangent space T,C of the
configuration manifold, and do not (infinitesimally) change the contact point
on f,

If a principal curvature is zero, the corresponding axis will be at infinity.
Obviously rotations of these three types span ker dgt.
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ptn]

pn/x+w] ¥

Fig. 3. Situation where the contact point has only one infinitesimal degree of
freedom (cf. Section 5.2): front view and lateral view.

5.2. Multiply constrained motion

Now we consider the configuration manifold C N K of a motion constrained
by surface-surface contact and a line congruence X as described in Sect. 4.4.
The contact point still depends smoothly on ¢ € C N K. But does it have
nonzero velocity for all infinitesimal motions different from the rotations about
the contact normal? Obviously, that depends on the intersection kerdgy N
Ty(C N K). Because kerdyyp C T,C, this intersection equals kerdgip N T K.
Depending on its dimension, there are the following three possibilities:

e dim = 1: Only the infinitesimal rotations about the contact normal are in
ker dgt. The infinitesimal motion of the contact point is two-dimensional.

e dim = 2: The rank of ¢ is one, and the contact point varies infinitesimally
only in one direction.

e dim = 3: rk¢y = 0 and the contact point does not move infinitesimally.

If the line g{a) belonging to the current position g € CN K is a hyperbolic line
of K, then the rank of ¢’s restriction to CN K can be determined geometrically
(see Fig. 3):

Proposition. We use the notation of the propositions in Sect. 4.3 and of the
lemma in Sect. 5.1. If there are lines sy, sy such that s; intersects both b', b,
s; Is incident with p+n/k; (i = 1,2), and s1 C p+[n]+[we], 52 C p+[n]+[wi],
then rtky)|C N K < 1, otherwise tky)|C N K = 2.

Proof: The lemma in Sect. 5.1 describes kerg ¢ =: A and the first proposition
in Sect. 4.2 does the same for TyK =: B. To compute AN B we apply the
duality which assigns to a linear space A C R® the linear space A* of those
infinitesimal motions (a*, &*) which fulfill a-a* + @ - a* = 0 for all (a,a) € A.
Clearly, dim A* = 6 — dim A and (A N B)* is the linear span of A*, B*.

If is well known that an infinitesimal rotation is in A* if and only if its axis
intersects all the axes of the infinitesimal rotations of A. Thus, the rotation
axes in A* consist of two pencils with the same vertices as those of A, but
with orthogonal planes; and the rotation axes of B* are just the lines ¥’, b".
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Rank < 1 means dim(A*+B*) < 4, or that the span of ¥’ and A* contains
b". It is easily seen that apart from even more special cases, this happens if
the axes of this span are a hyperbolic linear congruence with axes s;, so. O

§6. Collision Checking

It is possible that a milling tool has no local intersections with the finished
surface, but while in contact with the surface at one point, it cuts into another
part. Algorithms which test for this type of intersection of two bodies in space
are time consuming, and therefore we want to circumvent the general collision
test in some way. In some cases we are able to predict the total absence of
collisions based only on the curvatures of the boundaries of the two bodies
involved.

We say that a surface @ is millable by a body I, if (a) there are no local
intersections, and (b) it is possible for ¥ to move, within previously imposed
constraints, along the surface ® such that it touches & during this motion,
but never actually intersects it.

6.1. 3-axis milling

3-axis milling means that a milling tool ¥ rotates about its axis a and moves
such that a remains parallel to a fixed line, and ¥ always touches the finished
surface. As the rotation about a is not important for geometric considerations,
we disregard it completely and consider a body which moves in a translational
manner.

We assume that ¥ as well as the workpiece ® are bounded by piecewise
twice continuously differentiable surfaces (convex edges are allowed). Then
the so-called general offset surface (defined below, see Fig. 4, right) of ® with
respect to ¥ shows in its singularities and self-intersections the singular posi-
tions of the motion and the collisions (cf. [15,16]).

Definition. Choose a reference point p attached to ¥.. Consider the set of
translations T such that 7(X) touches ® (disregarding intersections). Then
the set of all points 7(p) is called the general offset surface of ® with respect
to X.

Theorem 7. If ¥ is strictly convex with positive principal curvatures, and ®
is connected, then the general offset surface of ® with respect to ¥ is smooth.
It is regular in all points which correspond to translationally regular contact
positions, and if it is both regular and free of self-intersections, then ® is
globally millable by X.

Proof: (cf. [16,23]) For all points p € ® there is a unique position g such that
g(X) touches ® in p. The parametrization of the general offset which thus
is induced by the parametrization of @ is easily seen to be smooth. There is
always a point pg such that ¥ N ® consists of py only. If ¥ touches ® in p, and
thereby cuts into another part of ®, then let £ move such that the contact
point follows a curve which joins py with p. At the first time that the set
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Fig. 4. Left: Line congruence K, finished workpiece ® and cutter X. Right:
Workpiece @, milling-tool ¥ and general offset surface T'.

3N ® consists of more than one point, ¥ and & touch each other in all points
of ¥ N ®, which leads to a multiple point of the general offset. O

Thus, we have transformed the collision problem into the problem of
determining singularities and self-intersections of certain surfaces. If ® has
some additional properties then it is not difficult to guarantee total absence
of unwanted collisions provided that no local collisions occur:

o if ® is convex and X, ® are oppositely oriented (i.e., the body bounded
by @ is its inside); or

o if ¢ is convex and X, ® are equally oriented (i.e., the body bounded by
® is its outside and ¥ is inside); or

o if ® is star-shaped and bounds its inside; or

o if ® is star-shaped, bounds its outside, and X fits into the convex core of
® (the convex core of a star-shaped set M is the set of points with respect
to which M is star-shaped — it is a convex subset of M); or

¢ if ¢ is the graph surface of a function over a planar domain whose bound-
ary is millable by the ‘top view’ contour of 3.

Proof: The proof of this can be found in [16], and generalizations actually
unimportant for applications are studied in [23]. The idea of the proof, which
is important also for the proof of Th. 8, is as follows: We assume that there
is a ‘projection’ of entire space onto ®. If e.g. ® is convex, just choose any
interior point o, and to project a point p, intersect the ray o3 with ®.

Then consider the following mapping whose domain is ®: For a point
z € @, translate ¥ such that it touches ® there, and project a previously
chosen reference point of ¥ onto ®. This mapping is shown to be smooth
and orientation-preserving, and by scaling ¥ with a factor A (1 > X > 0)
is deformed into the identity mapping. Differential topology allows now to
conclude the @ is one-to-one and onto, which means that no translate of
can touch ¢ in more than one point. O

6.2. 5-axis milling constrained by a line congruence

Here 5-axis milling means that the milling tool moves such that it touches the
finished surface, and its axis is always contained in a line congruence K.
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Definition. A regularity domain of K is an open domain M in R® such that
K defines a fibration of M (every point of M is contained in exactly one set
I N M, where | is a line of the congruence). A section of a regularity domain
M is a surface which intersects all sets I N M exactly once. The regularity
domain M is a tubular neighbourhood of its section ® if it is diffeomorphic
to ® x R.

The domain M is a tubular neighbourhood of ® if the sets [N M are open line
segments, the point p = ® NI N M is an interior point of this segment, and
the initial and end points of the segment depend smoothly on p.

We say that a convex body X with rotational symmetry is admissible for
a line congruence K and a connected closed surface ¢ which is the boundary
of a subset of IR? if the following is fulfilled:

e There is a regularity domain M for K which is a tubular neighbourhood
of ®.

e ¥ moves such that it is entirely contained in the regularity domain.

¢ In no position of C' N K the contact tangent plane is parallel to the axis
of .

e The contact point has two infinitesimal degrees of freedom for all scaled
versions AL, 0 < A <1 (cf. Sect. 5.2).

These conditions are actually easy to fulfill in practice except for the last one,
which is difficult to detect in advance. In the special case of three-axis milling
(K is a bundle of parallel lines), this requires that all contact points on ¥ are
elliptic surface points.

Suppose that we are given a surface ® and a milling-tool ¥, and we have
chosen a congruence K, and have found, for all contact points on ®, a position
g(¥) such that g(X)’s axis is in K. Suppose we have already tested for local
millability and the admissibility conditions described above. Then we have
the following

Theorem 8. Under the circumstances described above, the cutter does not
interfere with the surface X, i.e., ® is globally millable by ¥.

Note that in many cases it will be sufficient to check the admissibility only for
the cutter head, because collisions of the cutter shaft with the workpiece will
be treated by different methods (see the introduction)

Proof: In Section 5 we have established that the contact point depends
smoothly on ¥’s position g. Let a be ¥’s axis, and let p be a rotation about
g(a). Clearly p o g is again a contact position with the same contact point as
g. If we choose a reference point p on ¥’s axis and inside %, the path surface
of p also depends smoothly on g, and p o g(p) = g(p).

This means that the contact point depends smoothly on the position
g(p) of the reference point. The last admissibility condition ensures that also
g(p) depends smoothly on the contact point. Thus, we can define a smooth
mapping f : & — @ as follows: A contact point ¢ € ® is mapped to the
corresponding point g(p), which is subsequently mapped to the intersection
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f(q) of g(a) with ®. If we scale ¥ with a factor A (0 < A < 1), we get
mappings fx, where fp is the identity mapping of ® onto itself, and fi(q)
depends continously on A. f is never singular since we are in a regularity
domain, f; = f is orientation-preserving because fy is, and the number of
pre-images of a point is the same for fy = id and f; = f. This shows that
f is one-to-one and onto. If g(¥) touches ® in one point and cuts into @ in
another, there also is a position g(X) where X touches in two different points
(cf. the proof of Th. 7). These two points have the same f-image by definition
of f, which contradicts bijectivity of f. O
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